Telegram Group & Telegram Channel
Как использовать категориальные признаки в k-Means

Алгоритм k-Means плохо работает с категориальными признаками, потому что понятие среднего значения неприменимо к строковым значениям вроде «красный», «синий» или «зелёный».

🛠 Что можно сделать

📍 One-hot encoding — преобразуем каждую категорию в бинарный вектор. Это позволяет применить *k-Means*, но увеличивает размерность и может искажать расстояния.
📍 Label encoding — простой способ, но порядок присвоенных чисел может ввести модель в заблуждение (например, «cat» = 0, «dog» = 1, «elephant» = 2).
📍 Оба метода не гарантируют адекватную интерпретацию расстояний между категориями.

🔄 Альтернатива

Вместо k-Means для категориальных или смешанных данных лучше использовать:
📍 k-Modes — аналог k-Means, но для чисто категориальных признаков (использует моду вместо среднего).
📍 k-Prototypes — работает с числовыми и категориальными данными одновременно.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/965
Create:
Last Update:

Как использовать категориальные признаки в k-Means

Алгоритм k-Means плохо работает с категориальными признаками, потому что понятие среднего значения неприменимо к строковым значениям вроде «красный», «синий» или «зелёный».

🛠 Что можно сделать

📍 One-hot encoding — преобразуем каждую категорию в бинарный вектор. Это позволяет применить *k-Means*, но увеличивает размерность и может искажать расстояния.
📍 Label encoding — простой способ, но порядок присвоенных чисел может ввести модель в заблуждение (например, «cat» = 0, «dog» = 1, «elephant» = 2).
📍 Оба метода не гарантируют адекватную интерпретацию расстояний между категориями.

🔄 Альтернатива

Вместо k-Means для категориальных или смешанных данных лучше использовать:
📍 k-Modes — аналог k-Means, но для чисто категориальных признаков (использует моду вместо среднего).
📍 k-Prototypes — работает с числовыми и категориальными данными одновременно.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/965

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA